
Data Science Lab
Spring 2025 Course
DSL Best Practices

Giovanni Acampa & Arnout Devos

Ensuring success in your project

What this session covers:
● Tips and tricks for a successful Data Science Lab project.
● How to meet expectations and deadlines effectively.
● Technical suggestions to help you with your coding setup.
● Help you with experience from previous Data Science Labs.

But first: how was the feedback for DSL from last semester’s students?

Last semester feedback

This is what last semester’s
students liked!

Last semester feedback

And this is what they didn’t like. We are trying to improve it this
semester: this presentation already contains some of the solutions!

Tips & Tricks

Tips & Tricks - Define your goals

For how naive it may sound, remember to define your goals clearly.

● Why? Clear goals provide direction and help prioritize tasks.
● Start small. Maybe you will run out of time or find difficulties along

the way: you should still have some results, such as a small model
trained or your experiment’s results on a subset of the data.

● Have a long term vision. Divide your work in subtasks, but always
keep in mind why you are accomplishing the tasks. Keeping an
agenda with weekly updates on the project can be useful.

Tips & Tricks - Literature review

The literature review is a step that is too often overlooked or conducted
too late in the project.
● Why? You want to understand the state of the art research and

build on that, rather than duplicating existing papers. You also want
to understand which approaches are more likely to fail.

● How? Read recent and highly cited papers, for example from Arxiv
or Google Scholar. Save the references to these papers and show
that you are building your project keeping the SOTA research into
account.

Tips & Tricks - Establishing baselines

Remember to always compare your results with some baselines. Two
suggestions are:
● Compare with results from other papers, that worked with

similar problems, datasets or methods.
● Build your own baselines: before running experiments with a

complex technique, try to solve the problem with a linear
regression, decision tree or a simple perceptron.

Show how your final results are an improvement over the baseline.
Take any difference between experiments into account, like dataset,
metric or hyperparameters.

Tips & Tricks - Consult with the coaches

You can benefit from an academic coach and a challenge giver.
● Academic coach. Have a group meeting with the academic coach

every 1 or 2 weeks. They can help you to understand if the
technical approach is correct and if there are some important steps
you are skipping.

● Challenge giver. Have a group meeting with the challenge giver
every 3 or 4 weeks. You should update them on your findings and
understand together what are the next steps.

● Come prepared to the meetings. Come with specific questions
and with some slides on your current results and future
expectations.

Tips & Tricks - Don’t be scared of negative results

A negative result can be a great result!
● Justify the results. If the experiments are not validating the

hypothesis, try to show that maybe it’s impossible to predict the
variable Y from X. Show that you followed every step correctly and
your experiments are reliable, or double check your pipeline to find
mistakes.

● Find an alternative way. From your wrong results you may get a
new idea on how to solve the problem. Maybe you can predict the
variable Y from Z instead of X.

Expectations & Deadlines

Expectations & Deadlines - Presentations

There will be 3 important deadlines (more info on the exact dates will
be given later):
● Mid-term check-in: mid-semester. Presence is mandatory.
● Final presentation: end-of-semester. Presence is mandatory.
● Report submission: end-of-semester. Submission is mandatory.

Expectations & Deadlines - Presentations

How does it work?
● Mid-term check-in: you need to prepare a few slides (usually 3)

focusing on:
○ Introduction to the project
○ Initial approach to the project and what you have done so far
○ Being quantitative (numbers, graphs, ...) / scientific (related

work, baselines, comparison, ...) is recommended
○ What are your planned next steps

Expectations & Deadlines - Presentations

How does it work?
● Final presentation: it will be a poster session. Each group will

prepare a poster and will explain it to academic coaches, challenge
givers and other students attending the event

● Report submission: you have to prepare a report written in the
form of a scientific paper, that your supervisors will grade with a
pass/fail grade

Expectations & Deadlines - Templates

For the poster and the report, we provide two useful templates at the
following links:
● Poster: https://www.overleaf.com/read/xzrpcdjscrkm#4a8d04

(template.tex)
● Report: https://www.overleaf.com/read/hknhbrbwcvcb#55ba68

(template.tex; don't touch acmart.cls)

https://www.overleaf.com/read/xzrpcdjscrkm#4a8d04
https://www.overleaf.com/read/hknhbrbwcvcb#55ba68

Expectations & Deadlines - Templates

Notes about the templates:
● You must write a 2-columns report of up to 6-pages, excluding

references and appendices. Make sure to be scientific
● The report includes a necessary contributions footnote: update

and check it with everyone involved
● The report includes a necessary preprint footnote: please link

your public repository (e.g., GitHub) including an MIT license there.
● The poster has to be printed in A1 format. On the poster, only

include the ~3 most important references

Expectations & Deadlines - Reproducible code

The code that you develop should be easily reproducible. We don’t
want to force you to use a specific repo structure, but please follow the
following advice:
● Create a readme.md file.

○ You can quickly explain how the code is organized what it is
supposed to do and what are the most important .py files.

● Include a few running examples in the readme to test your code.
○ Always make sure that your examples run in a short time. You

can make examples of training with a dummy dataset or
evaluation.

● Write clean code. Remove unused variables, write functions to
make it more readable and format it appropriately.

Expectations & Deadlines - Reproducible code

The code that you develop should be easily reproducible. We don’t
want to force you to use a specific repo structure, but please follow the
following advice:
● Run your experiments in a conda/venv environment, to keep

track of the packages you are using. In the readme, specify the
python version you used.

● Create a requirements.txt file or similar (e.g. see poetry) with all
the packages needed to run your code.

● At the end of the project test the code yourself! Download your
own repo on your computer, follow your instructions from the
readme and see if the running examples work.

Technical suggestions

Technical suggestions - Understanding the Data

In most of the projects the challenge giver will provide you with a
dataset:
● Understanding the data: what are the data representing? Are they

already clean? Do some variable appear useless or extremely
useful? You can formulate hypothesis before running the
experiments.

● Start with a subset: especially if the dataset is large, perform your
experiments on a subset first. This will save you time and give you
good insights on what works and what doesn’t.

● What can I do with these data? Do I have enough data to train a
deep learning model? Should I use something simpler?

Technical suggestions - Data processing

● Data cleaning: almost every dataset needs to be cleaned, using
steps such as data normalization, data imputation and outliers
removal.

● Data splitting: remember to split your data into
training/test/validation set (usually 80/10/10) early in your project,
to avoid any data contamination.

● Preliminary analysis: Observe your data. Building visualizations
and basic statistics can help you to discover flaws or oddities in the
data in an early stage of the project, saving you time.

Technical suggestions - Use of existing infrastructure

● There are several software tools and packages that can help you
in your project, such as PyTorch, TensorFlow and scikit-learn.

● Depending on the topic of your project, e.g. NLP, Computer
Vision…, there are several specific libraries that you can find
online.

● These resources can help you a lot in your project. Whatever you
decide to use, make sure to mention it in your presentations and
report.

Technical suggestions - Computing resources

● ETH provides a student cluster with GPUs for INFK courses. You can
find here the full guide to the student cluster:
https://www.isg.inf.ethz.ch/Main/HelpClusterComputingStudentCluster

https://www.isg.inf.ethz.ch/Main/HelpClusterComputingStudentCluster

Q&A
Any questions?

